Ingredients for life found in meteorites

Two meteorites that fell to Earth in 1998 have been analysed using modern methods and have been found to contain essential ingredients for life – water, amino acids, hydrocarbons and other organic matter.

CNN:  Ingredients for life found in meteorites that crashed to Earth

Although two 4.5-billion-year-old meteorites crashed to Earth in 1998, it’s taken until now to uncover some of their secrets.

The two meteorites, called Monahans and Zag, are the first discovered to contain the ingredients for life: liquid water, amino acids, hydrocarbons and other organic matter.

A chemical-makeup analysis of blue and purple salt and potassium crystals from the meteorites was published in the journal Science Advances on Wednesday.

Although it’s not exactly proof that life exists beyond Earth, the traces of water in the salt crystals could date to the earliest days of our solar system.

This indicates a probability there are ingredients for life elsewhere in our own solar system, but while the odds are strongly in favour that this could be replicated elsewhere in the Universe it is not proof beyond our tiny patch.

Before slamming into Earth — one near a youth basketball game in Texas in March 1998 and another near Morocco in August 1998 — the meteorites lived in our solar system’s asteroid belt for billions of years.

The salt crystals from the two meteorites are similar, and researchers believe that these two objects crossed paths at some point. But the salt crystals were not always part of the meteorites themselves. It’s possible that they came from volcanic activity that ejected water or ice, which happens on ocean worlds in our solar system, and attached to the meteorites through impact.

A blue crystal recovered from a meteorite that fell near Morocco in 1998.

“Our coordinated organic analysis of the salt crystals suggest that the organic matter originated from a water-rich, or previously water-rich parent body — an ocean world in the early solar system, possibly Ceres,” Queenie Chan, study author and postdoctoral research associate at The Open University in the UK, wrote in an email.

Chan said her team has saved some of the larger blue salt crystals for future analysis. They hope to discover more liquid water in the salt crystals and investigate the origin of the water itself. There are also other meteorite samples with well-preserved crystals that they want to test.

“Our finding that the meteorites contain a wide diversity of organic compounds is exciting, but what made me jump up and down was that we were able to investigate the soluble — such as amino acids, the building blocks of life — and insoluble organic compounds contain within the tiny salt crystals which are only about 2 mm in size each, and which are the hosts to liquid water — another crucial ingredient for life to occur,” Chan said.

“These results pay off the amount of time and effort I spent in the laboratory trying to break the meteorite sample apart to ‘hand pick’ and collect the stunning blue salt crystals.”

It has taken nearly twenty years to get these results.

Technology had to catch up before researchers could even think about the in-depth analysis they wanted to carry out.

More could be discovered from these and other meteorites in the future.

Another 8 planet solar system

NASA have now discovered an eighth planet orbiting the Kepler-9 sun – or at least they were 2,545 light-years ago, we can only look back into history.

NASA: Artificial Intelligence, NASA Data Used to Discover Eighth Planet Circling Distant Star

The planet was discovered in data from NASA’s Kepler Space Telescope.

The newly-discovered Kepler-90i – a sizzling hot, rocky planet that orbits its star once every 14.4 days – was found using machine learning from Google. Machine learning is an approach to artificial intelligence in which computers “learn.” In this case, computers learned to identify planets by finding in Kepler data instances where the telescope recorded signals from planets beyond our solar system, known as exoplanets.

The discovery came about after researchers Christopher Shallue and Andrew Vanderburg trained a computer to learn how to identify exoplanets in the light readings recorded by Kepler – the minuscule change in brightness captured when a planet passed in front of, or transited, a star. Inspired by the way neurons connect in the human brain, this artificial “neural network” sifted through Kepler data and found weak transit signals from a previously-missed eighth planet orbiting Kepler-90, in the constellation Draco.

While machine learning has previously been used in searches of the Kepler database, this research demonstrates that neural networks are a promising tool in finding some of the weakest signals of distant worlds.

Other planetary systems probably hold more promise for life than Kepler-90. About 30 percent larger than Earth, Kepler-90i is so close to its star that its average surface temperature is believed to exceed 800 degrees Fahrenheit, on par with Mercury. Its outermost planet, Kepler-90h, orbits at a similar distance to its star as Earth does to the Sun.

“The Kepler-90 star system is like a mini version of our solar system. You have small planets inside and big planets outside, but everything is scrunched in much closer,” said Vanderburg, a NASA Sagan Postdoctoral Fellow and astronomer at the University of Texas at Austin.

I don’t know how accurate this planet detection is – and of course there could be more planets not yet detected there.

A lot closer to earth: Is ‘Oumuamua an alien spacecraft? First scans show no signs of technology

The first scans for alien technology aboard a mysterious object that is barreling through the solar system have found no evidence it is the work of an intelligent civilisation.

The cigar-shaped object was spotted hurtling through the solar system in Octoberand while astronomers suspected it was an interstellar asteroid, its curious shape led them to propose sweeping it for radio signals in case it happened to be an alien craft.

While the long, slender object may have been well suited to flying through clouds of interstellar gas at breakneck speed, as some researchers noted, the observation that the body was tumbling through space suggests any aerodynamic advantage was at best minimal.

Scientists on the Breakthrough Listen project, funded by the internet billionaire Yuri Milner, used the Green Bank telescope in West Virginia to eavesdrop on the 400m-long body named ‘Oumuamua, from the Hawaiian word for “messenger” or “scout”. The body is twice as far from Earth as the sun, but the telescope is so sensitive it could detect transmissions as weak as those produced by a mobile phone.

But on Thursday, the astronomers declared that the first observations across four bands of the radio spectrum had found no evidence that ‘Oumuamua is anything other than a long lump of space rock. Scientists on the project have released the data from the observations so anyone can study the information.

I suppose until it’s proven that it isn’t aliens then it theoretically could be, but I wonder why there was speculation this rock could have been anything different.

Images of Saturn and Earth

Just over a week ago the Cassini spacecraft was deliberately crashed into Saturn at the end of it’s extended mission orbiting the gas giant planet.

Saturn and its magnificent rings

NASA:  Cassini Spacecraft Ends Its Historic Exploration of Saturn

Cassini launched in 1997 from Cape Canaveral Air Force Station in Florida and arrived at Saturn in 2004. NASA extended its mission twice – first for two years, and then for seven more. The second mission extension provided dozens of flybys of the planet’s icy moons, using the spacecraft’s remaining rocket propellant along the way. Cassini finished its tour of the Saturn system with its Grand Finale, capped by Friday’s intentional plunge into the planet to ensure Saturn’s moons – particularly Enceladus, with its subsurface ocean and signs of hydrothermal activity – remain pristine for future exploration.

While the Cassini spacecraft is gone, its enormous collection of data about Saturn – the giant planet, its magnetosphere, rings and moons – will continue to yield new discoveries for decades to come.

Just prior to this:  Cassini Spacecraft Makes Its Final Approach to Saturn

NASA’s Cassini spacecraft is on final approach to Saturn, following confirmation by mission navigators that it is on course to dive into the planet’s atmosphere on Friday, Sept. 15.

Cassini is ending its 13-year tour of the Saturn system with an intentional plunge into the planet to ensure Saturn’s moons – in particular Enceladus, with its subsurface ocean and signs of hydrothermal activity – remain pristine for future exploration. The spacecraft’s fateful dive is the final beat in the mission’s Grand Finale, 22 weekly dives, which began in late April, through the gap between Saturn and its rings. No spacecraft has ever ventured so close to the planet before.

Some of the last images taken by Cassini:

Saturn Hemisphere

Saturn’s northern hemisphere with rings in the background

Enceladus

One of Saturn’s moons, Enceladus, on the horizon
(Saturn has 62 confirmed moons)

 

Saturn Rings

Saturn’s rings

Saturn's rings and our planet Earth

An earlier (2013) photo of Earth from Saturn

And zooming in a bit closer:

New Earthrise Image from LRO spacecraft

A view of earth from NASA’s Lunar Reconnaissance Orbiter (LRO)

Image Credits: NASA/JPL-Caltech/Space Science Institute

Open Forum – Friday

9 June 2017

Facebook: NZ politics/media+

This post is open to anyone to comment on any topic that isn’t spam, illegal or offensive. All Your NZ posts are open but this one is for you to raise topics that interest you. 

If providing opinions on or summaries of other information also provide a link to that information. Bloggers are welcome to summarise and link to their posts.

Comments worth more exposure may be repeated as posts.

Your NZ is a mostly political and social issues blog but not limited to that, and views from anywhere on the political spectrum are welcome. Some ground rules:

  • If possible support arguments, news, points or opinions with links to sources and facts.
  • Please don’t post anything illegal, potentially defamatory or abusive.

Swooping around Jupiter

The Juno spacecraft is orbiting Jupiter, returning a lot of science and images to NASA on Earth.

Sequence of Juno Spacecraft’s Close Approach to Jupiter

Juno telecon image

Image Credit: NASA/SWRI/MSSS/Gerald Eichstädt/Seán Doran

This sequence of enhanced-color images shows how quickly the viewing geometry changes for NASA’s Juno spacecraft as it swoops by Jupiter. The images were obtained by JunoCam.

Once every 53 days the Juno spacecraft swings close to Jupiter, speeding over its clouds. In just two hours, the spacecraft travels from a perch over Jupiter’s north pole through its closest approach (perijove), then passes over the south pole on its way back out.

The first image on the left shows the entire half-lit globe of Jupiter, with the north pole approximately in the center. As the spacecraft gets closer to Jupiter, the horizon moves in and the range of visible latitudes shrinks.

The third and fourth images in this sequence show the north polar region rotating away from our view while a band of wavy clouds at northern mid-latitudes comes into view.

By the fifth image of the sequence the band of turbulent clouds is nicely centered in the image.

The seventh and eighth images were taken just before the spacecraft was at its closest point to Jupiter, near Jupiter’s equator. Even though these two pictures were taken just four minutes apart, the view is changing quickly.

As the spacecraft crossed into the southern hemisphere, the bright “south tropical zone” dominates the ninth, 10th and 11th images.

The white ovals in a feature nicknamed Jupiter’s “String of Pearls” are visible in the 12th and 13th images.

In the 14th image Juno views Jupiter’s south poles.

An animated close encounter with Jupiter:

NASA / SwRI / MSSS / Gerald Eichstädt / Seán Doran

Music by Ligeti

A Whole New Jupiter: First Science Results from NASA’s Juno Mission

Early science results from NASA’s Juno mission to Jupiter portray the largest planet in our solar system as a complex, gigantic, turbulent world, with Earth-sized polar cyclones, plunging storm systems that travel deep into the heart of the gas giant, and a mammoth, lumpy magnetic field that may indicate it was generated closer to the planet’s surface than previously thought.

Juno launched on Aug. 5, 2011, entering Jupiter’s orbit on July 4, 2016. The findings from the first data-collection pass, which flew within about 2,600 miles (4,200 kilometers) of Jupiter’s swirling cloud tops on Aug. 27, are being published this week in two papers in the journal Science, as well as 44 papers in Geophysical Research Letters.

Among the findings that challenge assumptions are those provided by Juno’s imager, JunoCam. The images show both of Jupiter’s poles are covered in Earth-sized swirling storms that are densely clustered and rubbing together.

We’re puzzled as to how they could be formed, how stable the configuration is, and why Jupiter’s north pole doesn’t look like the south pole,” said Bolton. “We’re questioning whether this is a dynamic system, and are we seeing just one stage, and over the next year, we’re going to watch it disappear, or is this a stable configuration and these storms are circulating around one another?”

Another surprise comes from Juno’s Microwave Radiometer (MWR), which samples the thermal microwave radiation from Jupiter’s atmosphere, from the top of the ammonia clouds to deep within its atmosphere. The MWR data indicates that Jupiter’s iconic belts and zones are mysterious, with the belt near the equator penetrating all the way down, while the belts and zones at other latitudes seem to evolve to other structures. The data suggest the ammonia is quite variable and continues to increase as far down as we can see with MWR, which is a few hundred miles or kilometers.

Prior to the Juno mission, it was known that Jupiter had the most intense magnetic field in the solar system. Measurements of the massive planet’s magnetosphere, from Juno’s magnetometer investigation (MAG), indicate that Jupiter’s magnetic field is even stronger than models expected, and more irregular in shape. MAG data indicates the magnetic field greatly exceeded expectations at 7.766 Gauss, about 10 times stronger than the strongest magnetic field found on Earth.

“Juno is giving us a view of the magnetic field close to Jupiter that we’ve never had before,” said Jack Connerney, Juno deputy principal investigator and the lead for the mission’s magnetic field investigation at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Already we see that the magnetic field looks lumpy: it is stronger in some places and weaker in others. This uneven distribution suggests that the field might be generated by dynamo action closer to the surface, above the layer of metallic hydrogen. Every flyby we execute gets us closer to determining where and how Jupiter’s dynamo works.”

Juno also is designed to study the polar magnetosphere and the origin of Jupiter’s powerful auroras—its northern and southern lights. These auroral emissions are caused by particles that pick up energy, slamming into atmospheric molecules. Juno’s initial observations indicate that the process seems to work differently at Jupiter than at Earth.

Juno is in a polar orbit around Jupiter, and the majority of each orbit is spent well away from the gas giant. But, once every 53 days, its trajectory approaches Jupiter from above its north pole, where it begins a two-hour transit (from pole to pole) flying north to south with its eight science instruments collecting data and its JunoCam public outreach camera snapping pictures. The download of six megabytes of data collected during the transit can take 1.5 days.

“Every 53 days, we go screaming by Jupiter, get doused by a fire hose of Jovian science, and there is always something new,” said Bolton. “On our next flyby on July 11, we will fly directly over one of the most iconic features in the entire solar system — one that every school kid knows — Jupiter’s Great Red Spot. If anybody is going to get to the bottom of what is going on below those mammoth swirling crimson cloud tops, it’s Juno and her cloud-piercing science instruments.”

More information on the Juno mission is available at:

https://www.nasa.gov/juno

http://missionjuno.org

1 star with 7 Earth sized planets

NASA’s big announcement is that they have discovered seven earth sized planets orbiting a single star. Based on their densities they are likely to be rocky. Three of these planets within a ‘habitable zone’.


NASA Telescope Reveals Largest Batch of Earth-Size, Habitable-Zone Planets Around Single Star

NASA’s Spitzer Space Telescope has revealed the first known system of seven Earth-size planets around a single star. Three of these planets are firmly located in the habitable zone, the area around the parent star where a rocky planet is most likely to have liquid water.

The TRAPPIST-1 star, an ultra-cool dwarf, has seven Earth-size planets orbiting it. This artist’s concept appeared on the cover of the journal Nature on Feb. 23, 2017.

Credits: NASA/JPL-Caltech

 

The discovery sets a new record for greatest number of habitable-zone planets found around a single star outside our solar system. All of these seven planets could have liquid water – key to life as we know it – under the right atmospheric conditions, but the chances are highest with the three in the habitable zone.

“This discovery could be a significant piece in the puzzle of finding habitable environments, places that are conducive to life,” said Thomas Zurbuchen, associate administrator of the agency’s Science Mission Directorate in Washington. “Answering the question ‘are we alone’ is a top science priority and finding so many planets like these for the first time in the habitable zone is a remarkable step forward toward that goal.”

At about 40 light-years (235 trillion miles) from Earth, the system of planets is relatively close to us, in the constellation Aquarius. Because they are located outside of our solar system, these planets are scientifically known as exoplanets.

This exoplanet system is called TRAPPIST-1, named for The Transiting Planets and Planetesimals Small Telescope (TRAPPIST) in Chile. In May 2016, researchers using TRAPPIST announced they had discovered three planets in the system. Assisted by several ground-based telescopes, including the European Southern Observatory’s Very Large Telescope, Spitzer confirmed the existence of two of these planets and discovered five additional ones, increasing the number of known planets in the system to seven.

Using Spitzer data, the team precisely measured the sizes of the seven planets and developed first estimates of the masses of six of them, allowing their density to be estimated.

Based on their densities, all of the TRAPPIST-1 planets are likely to be rocky. Further observations will not only help determine whether they are rich in water, but also possibly reveal whether any could have liquid water on their surfaces. The mass of the seventh and farthest exoplanet has not yet been estimated – scientists believe it could be an icy, “snowball-like” world, but further observations are needed.

“The seven wonders of TRAPPIST-1 are the first Earth-size planets that have been found orbiting this kind of star,” said Michael Gillon, lead author of the paper and the principal investigator of the TRAPPIST exoplanet survey at the University of Liege, Belgium. “It is also the best target yet for studying the atmospheres of potentially habitable, Earth-size worlds.”

In contrast to our sun, the TRAPPIST-1 star – classified as an ultra-cool dwarf – is so cool that liquid water could survive on planets orbiting very close to it, closer than is possible on planets in our solar system. All seven of the TRAPPIST-1 planetary orbits are closer to their host star than Mercury is to our sun. The planets also are very close to each other. If a person was standing on one of the planet’s surface, they could gaze up and potentially see geological features or clouds of neighboring worlds, which would sometimes appear larger than the moon in Earth’s sky.

The planets may also be tidally locked to their star, which means the same side of the planet is always facing the star, therefore each side is either perpetual day or night. This could mean they have weather patterns totally unlike those on Earth, such as strong winds blowing from the day side to the night side, and extreme temperature changes.

“This is the most exciting result I have seen in the 14 years of Spitzer operations,” said Sean Carey, manager of NASA’s Spitzer Science Center at Caltech/IPAC in Pasadena, California. “Spitzer will follow up in the fall to further refine our understanding of these planets so that the James Webb Space Telescope can follow up. More observations of the system are sure to reveal more secrets.”

NASA on exoplanet discovery

NASA is having a news conference to present new findings on exoplanets (planets orbiting stars) at 1 pm Wednesday EST, which is 7 am Thursday NZ time.


NASA to Host News Conference on Discovery Beyond Our Solar System

NASA will hold a news conference at 1 p.m. EST Wednesday, Feb. 22, to present new findings on planets that orbit stars other than our sun, known as exoplanets. The event will air live on NASA Television and the agency’s website.

Details of these findings are embargoed by the journal Nature until 1 p.m.

Limited seating is available in the NASA TV studio for media who would like to attend in person at the agency’s Headquarters at 300 E Street SW in Washington. Media unable to attend in person may ask questions by telephone. To attend in person or participate by phone, media must send an email with their name, affiliation and telephone number to Dwayne Brown at dwayne.c.brown@nasa.gov by noon Feb. 22.

The briefing participants are:

  • Thomas Zurbuchen, associate administrator of the Science Mission Directorate at NASA Headquarters in Washington
  • Michael Gillon, astronomer at the University of Liege in Belgium
  • Sean Carey, manager of NASA’s Spitzer Science Center at Caltech/IPAC, Pasadena, California
  • Nikole Lewis, astronomer at the Space Telescope Science Institute in Baltimore
  • Sara Seager, professor of planetary science and physics at Massachusetts Institute of Technology, Cambridge

A Reddit AMA (Ask Me Anything) about exoplanets will be held following the briefing at 3 p.m. with scientists available to answer questions in English and Spanish.


An exoplanet or extrasolar planet is a planet that orbits a star other than the Sun. The first scientific detection of an exoplanet was in 1988. However, the first confirmed detection came in 1992; since then, and as of 15 February 2017, there have been 3,577 exoplanets in 2,687 planetary systems and 602 multiple planetary systems confirmed.

HARPS (since 2004) has discovered about a hundred exoplanets while the Kepler space telescope (since 2009) has found more than two thousand. Kepler has also detected a few thousand candidate planets, of which about 11% may be false positives.

On average, there is at least one planet per star, with a percentage having multiple planets.

About 1 in 5 Sun-like stars  have an “Earth-sized” planet in the habitable zone.

Assuming there are 200 billion stars in the Milky Way, one can hypothesize that there are 11 billion potentially habitable Earth-sized planets in the Milky Way, rising to 40 billion if planets orbiting the numerous red dwarfs are included.

https://en.wikipedia.org/wiki/Exoplanet

I can’t find anything but speculation about what the news might be, but here is a bit of a teaser.

CNET: NASA teases a major new exoplanet discovery

This week NASA will announce new findings about planets orbiting other stars that look to be the biggest exoplanet news since last year’s announcement of a potentially habitable exoplanet around our closest stellar neighbor, Proxima Centauri.

We’ve seen the research, and while we can’t share details yet, let’s just say it could very easily provide us with new settings for many future works of science fiction.

SiliconRepublic: What we know about NASA’s major exoplanet announcement

As for tomorrow’s announcement, some of the names expected to attend the conference might offer a few hints.

One of those names is Belgian astronomer Michael Gillon from the University of Liège, who has spent years studying exoplanets using TRAPPIST (TRAnsiting Planets and PlanetesImals Small Telescope), a 60cm telescope.

In May of last year, Gillon and his fellow researchers published a paper in Nature – the same journal that this latest mysterious announcement will be included in – announcing the discovery of three planets orbiting an ultra-cool dwarf star, just 40 light years from Earth.

Ok, that doesn’t tell us much, but whatever NASA announces should be interesting given the build up.

 

Harmonics in Space

Visions of Harmony: Inspired by NASA’s Mission Juno

This Apple Music original celebrates the space agency’s groundbreaking journey to Jupiter—and the intersection between science and art.

While this is new harmony and space isn’t.

In 1619 Johannes Kepler publisahed Harmonices Mundi ( The Harmony of the World).

While medieval philosophers spoke metaphorically of the “music of the spheres”, Kepler discovered physical harmonies in planetary motion. He found that the difference between the maximum and minimum angular speeds of a planet in its orbit approximates a harmonic proportion. For instance, the maximum angular speed of the Earth as measured from the Sun varies by a semitone (a ratio of 16:15), from mi to fa, between aphelion and perihelion. Venus only varies by a tiny 25:24 interval (called a diesis in musical terms). Kepler explains the reason for the Earth’s small harmonic range:

The Earth sings Mi, Fa, Mi: you may infer even from the syllables that in this our home misery and famine hold sway.

The celestial choir Kepler formed was made up of a tenor (Mars), two bass (Saturn and Jupiter), a soprano (Mercury), and two altos (Venus and Earth). Mercury, with its large elliptical orbit, was determined to be able to produce the greatest number of notes, while Venus was found to be capable of only a single note because its orbit is nearly a circle.

At very rare intervals all of the planets would sing together in “perfect concord”: Kepler proposed that this may have happened only once in history, perhaps at the time of creation.

Kepler reminds us that harmonic order is only mimicked by man, but has origin in the alignment of the heavenly bodies:

Accordingly you won’t wonder any more that a very excellent order of sounds or pitches in a musical system or scale has been set up by men, since you see that they are doing nothing else in this business except to play the apes of God the Creator and to act out, as it were, a certain drama of the ordination of the celestial movements. (Harmonices Mundi, Book V).

Kepler discovers that all but one of the ratios of the maximum and minimum speeds of planets on neighboring orbits approximate musical harmonies within a margin of error of less than a diesis (a 25:24 interval). The orbits of Mars and Jupiter produce the one exception to this rule, creating the unharmonic ratio of 18:19. In fact, the cause of Kepler’s dissonance might be explained by the fact that the asteroid belt separates those two planetary orbits, as discovered in 1801, 150 years after Kepler’s death.

https://en.wikipedia.org/wiki/Harmonices_Mundi

 

Juno flyby #3

Juno will soon soon do it’s third flyby of Jupiter, the first close encounter with most of it’s instruments gathering data.

NASA Juno Mission Prepares for December 11 Jupiter Flyby

On Sunday, December 11, at 9:04 a.m. PST (12:04 p.m. EST, 17:04 UTC) NASA’s Juno spacecraft will make its third science flyby of Jupiter.

That will be 6.04 am Monday New Zealand time.

At the time of closest approach (called perijove), Juno will be about 2,580 miles (4,150 kilometers) above the gas giant’s roiling cloud tops and traveling at a speed of about 129,000 mph (57.8 kilometers per second) relative to the planet.

Seven of Juno’s eight science instruments will be energized and collecting data during the flyby.

The eight instrument, the Jovian Infrared Auroral Mapper (JIRAM), is in need of a software patch.

“This will be the first time we are planning to operate the full Juno capability to investigate Jupiter’s interior structure via its gravity field,” said Scott Bolton, principal investigator of Juno from the Southwest Research Institute in San Antonio. “We are looking forward to what Jupiter’s gravity may reveal about the gas giant’s past and its future.”

junoflyby

Artist’s concept of the Juno spacecraft orbiting Jupiter.
Credits: NASA/JPL-Caltech
It will be very interesting to see what they discover about Jupiter, which was the largest and first planet to form in our Solar System.

The Juno spacecraft launched on Aug. 5, 2011, from Cape Canaveral, Florida, and arrived at Jupiter on July 4, 2016. During its mission of exploration, Juno soars low over the planet’s cloud tops — as close as about 2,600 miles (4,100 kilometers). During these flybys, Juno will probe beneath the obscuring cloud cover of Jupiter and study its auroras to learn more about the planet’s origins, structure, atmosphere and magnetosphere.

https://www.nasa.gov/feature/jpl/nasa-juno-mission-prepares-for-december-11-jupiter-flyby

Jupiter is the fifth planet from our sun and the largest planet in the solar system. Jupiter’s stripes and swirls are cold, windy clouds of ammonia and water. The atmosphere is mostly hydrogen and helium, and its iconic Great Red Spot is a giant storm bigger than Earth that has raged for hundreds of years.

10 ‘need to know’ facts about Jupiter:

1. The Biggest Planet
With a radius of 43,440.7 miles (69,911 kilometers), Jupiter is 11 times wider than Earth.

jupiterearth

2. Fifth in Line
Jupiter orbits our sun, a star. Jupiter is the fifth planet from the sun at a distance of about 484 million miles (778 million km) or 5.2 Astronomical Units (AU). Earth is one AU from the sun.

3. Short Day / Long Year
One day on Jupiter takes about 10 hours (the time it takes for Jupiter to rotate or spin once). Jupiter makes a complete orbit around the sun (a year in Jovian time) in about 12 Earth years (4,333 Earth days).

4. What’s Inside?
Jupiter is a gas-giant planet and therefore does not have a solid surface. Jupiter may have a solid, inner core about the size of Earth.

5. Atmosphere
Jupiter’s atmosphere is made up mostly of hydrogen (H2) and helium (He).

6. Many Moons
Jupiter has 53 known moons, with an additional 14 moons awaiting confirmation of their discovery — that is a total of 67 moons.

7. Ringed World
Jupiter has a faint ring system that was discovered in 1979 by the Voyager 1 mission. All four giant planets in our solar system have ring systems.

8. Exploring Jupiter
Many missions have visited Jupiter and its system of moons. The Juno spacecraft is currently orbiting Jupiter.

9. Ingredients for Life?
Jupiter cannot support life as we know it. However, some of Jupiter’s moons have oceans underneath their crusts that might support life.

10. Great Red Spot
Jupiter’s Great Red Spot is a gigantic storm (about the size of Earth) that has been raging for hundreds of years.

http://solarsystem.nasa.gov/planets/jupiter

Planet positions – obviously not distances:

1047px-planets2013-svg

 

Olympics – equestrian disappointment

After a good day at the cross country yesterday when the equestrian team rose to second place a disappointing result, finishing in fourth, just 3.5 points behind Australia who took the bronze behind France and Germany.

Jonelle Price dropped two rails to incur 8 penalty points, then Clarke Johnstone had a clear round. This left the result in Mark Todd’s hands and he dropped four rails to incur 16 penalty points, just too many to earn a medal.

The individual competition is currently under way with Johnstone starting the show jumping in fifth, Todd on eleventh and Price on sixteenth.

A shock result in the first pool game of the sevens with New Zealand losing 12-14 to Japan. Complacency? Over-confidence? Or just not good enough?

This doesn’t mean the end for them but they will have to beat both Kenya and Great Britain to progress to the playoffs.

The mens hockey team lost again, this time 2-3 to Spain. If they win their two remaining pool games they may still progress but they will have to improve.

Mixed results in the heats of the rowing, with some crews doing well and others missing out on finals.

A number of sailing events are also under way today.

Update – No medals in the individual equestrian eventing.